

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНСТИТУТ МЕЖДУНАРОДНЫХ ЭКОНОМИЧЕСКИХ СВЯЗЕЙ»

INSTITUTE OF INTERNATIONAL ECONOMIC RELATIONS

Принята на заседании Учёного совета ИМЭС (протокол от 27 марта 2025 г. № 8) **УТВЕРЖДАЮ** Ректор ИМЭС Ю.И. Богомолова 27 марта 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

по направлению подготовки 38.03.05 Бизнес-информатика

Направленность (профиль) «Информационные технологии в бизнесе»

Приложение 4 к основной профессиональной образовательной программе по направлению подготовки 38.03.05 Бизнес-информатика направленность (профиль) программы «Информационные технологии в бизнесе»

Рабочая программа дисциплины «Методы оптимальных решений» входит в состав основной образовательной программы высшего образования по направлению подготовки 38.03.05 Бизнес-информатика, направленность (профиль) «Информационные технологии в бизнесе» и предназначена для обучающихся очной и очно-заочной форм обучения.

СОДЕРЖАНИЕ

1. Цель и задачи дисциплины

Целью дисциплины «Методы оптимальных решений» является развитие системного мышления студентов путем детального анализа подходов к математическому моделированию и сравнительного анализа различных типов моделей; ознакомление студентов с математическими свойствами моделей и методов оптимизации, используемых при анализе и решении широкого спектра экономических задач.

Задачами дисциплины являются:

- ознакомление с составом и возможностями использования методов принятия решений, позволяющих строить экономические, финансовые и организационноуправленческие модели, а также анализировать их адекватность;
 - изучение основ и принципов моделирования социально-экономических процессов;
- обучение теории и практике применения количественных и качественных методов для обоснования оптимальных решений во всех областях профессиональной деятельности.

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования

Дисциплина «Методы оптимальных решений» входит в часть учебного плана, формируемого участниками образовательных отношений по направлению подготовки 38.03.05 Бизнес-информатика, направленность (профиль) программы «Информационные технологии в бизнесе».

3. Объем дисциплины в зачетных единицах и академических часах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоёмкость дисциплины составляет 3 зачётные единицы, всего – 108 часов.

	Всего часов			
Вид учебной работы	очная форма	очно-заочная		
	обучения	форма обучения		
Контактная работа с преподавателем (всего)	28	8		
В том числе:				
Занятия лекционного типа	14	6		
Занятия семинарского типа (семинары)	14	2		
Самостоятельная работа (всего)	80	100		
Форма контроля	Зачет с оценкой			
Общая трудоёмкость дисциплины	108			

4. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование компетенции(ий) выпускника	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине
ПК-1 Способен осуществлять сбор и анализ информации бизнес-анализа для принятия решений, выявлять и классифицировать риски и разрабатывать комплекс мероприятий по их минимизации	ИПК 1.1 Проводит сбор и анализ информации бизнесанализа для принятия решений. ИПК 1.2 Выявляет и классифицирует риски и осуществляет разработку мероприятий по их минимизации	Знать: основные понятия и методы решения оптимизационных задач. Уметь: проводить сбор и анализ информации для принятия решений; выбирать методы исследования. Владеть: навыком выявления рисков и способностью выбора метода оптимальных решений профессиональных задач.

5. Содержание дисциплины

Наименование тем (разделов)	Содержание тем (разделов)
Тема 1. Математические	Математические модели в экономике. Основные примеры: модели
модели и классификация	поведения потребителя и планирование производства в фирме,
задач и методов	использования оптимизации для идентификации параметров
принятия оптимальных	математической модели. Основные этапы и принципы построения
решений	математической модели. Основные этапы и принципы построения математической модели.
решении	Общая классификация математических моделей, используемых для
	решения управленческих задач. Теория оптимизации и методы
	выбора управленческих решений. Применение оптимизации в
	системах поддержки принятия решений.
	Основные представления о статической задаче оптимизации.
	Инструментальные (управляющие) переменные и параметры
	математической модели. Область (множество) допустимых
	решений (ОДР). Критерий выбора решения и целевая функция.
	Линии уровня целевой функции. Общая формулировка
	детерминированной статической задачи оптимизации. Достаточное
	условие существования глобального максимума (теорема Вейер-
	штрасса).
	Общая постановка задачи нелинейного программирования (НП).
	Задача НП и классическая задача условной оптимизации. Понятие о
	выпуклой задаче оптимизации. Основные понятия геометрии
	многомерного линейного пространства.
	Общая постановка задачи линейного программирования. Примеры
	экономических задач, решаемых с помощью составления и расчета
	линейных математических моделей. Каноническая и стандартная
	формы представления задачи ЛП и сведение к ним. Двойственность
	в линейном программировании. Виды двойственных задач и
	правила составления их математических моделей. Интерпретация
T 2 16	двойственных управляющих переменных.
Тема 2. Компьютерные	Градиентные методы в задаче безусловной оптимизации. Метод
и специальные методы	Ньютона. Метод градиентного спуска. Методы штрафных функций
оптимизации	в задачах линейного и нелинейного программирования. Линейное
	программирование в среде MS Excel. Типовые программы компьютерного решения задач линейного программирования. Основные
	представления о методах оптимизации в невыпуклом случае. Общая
	постановка целочисленной задачи линейного программирования.
	Основные методы решения целочисленных задач (графический
	метод, метод ветвей и границ, метод Гомори).
Тема 3.	Происхождение и постановка задачи многокритериальной
Многокритериальные	оптимизации. Задача поиска разумных экономических решений с
задачи и методы	учетом экологических факторов. Множество достижимых
принятия оптимальных	критериальных векторов. Доминирование и оптимальность по
решений в условиях	Парето. Эффективные решения и паретова граница. Теорема Куна-
неопределенности	Таккера в выпуклых задачах многокритериальной оптимизации.
	Понятие лица, принимающего решение (ЛПР). Основные методы
	решения задач многокритериальной оптимизации. Методы
	аппроксимации паретовой границы.
	Задача выбора решений в условиях неопределенности. Основные

критерии выбора решений в условиях неопределенности (принцип					
гарантированного результата, критерий Байеса-Лапласа, критерий					
Уальда, критерий Сэвиджа, критерий Гурвица). Применение					
принципа гарантированного результата в задачах экономического					
планирования. Множество допустимых гарантирующих программ.					
Наилучшая гарантирующая программа. Принятие решений при					
случайных параметрах. Вероятностная информация о параметрах.					
Принятие решений на основе математического ожидания.					
Случайность и риск. Матрица рисков. Учет склонности к риску.					
Динамические задачи оптимизации. Примеры: простейшая					
динамическая модель производства, задача поиска оптимальной					
производственной программы, задача распределения инвестиций.					
Многошаговые и непрерывные динамические модели.					
Понятия управления и состояния в динамических моделях. Задание					
критерия в динамических задачах оптимизации. Принципы по-					
строения динамического управления: построение программной					
траектории и использование обратной связи. Задача построения					
программной траектории как задача математического програм-					
мирования (в конечномерном или бесконечномерном					
пространстве). Динамическое программирование в многошаговых					
задачах оптимизации. Принцип оптимальности Беллмана. Функция					
Беллмана. Уравнение Беллмана в многошаговых задачах					
оптимизации. Решение задач динамического программирования (на					
примере задач о замене оборудования и распределения инвести-					
ций).					

6. Структура дисциплины по темам с указанием отведенного на них количества академических часов и видов учебных занятий

Очная форма обучения

N₂		Контактна	Контактная работа, час.		
п/	Наименование тем (разделов)	Занятия		CPC,	Всего,
П	дисциплины	лекционно	Семинары	час.	час.
		го типа			
1	Математические модели и	4	4	20	28
	классификация задач и методов				
	принятия оптимальных решений				
2	Компьютерные и специальные методы	2	2	20	24
	оптимизации				
3	Многокритериальные задачи и методы	4	4	20	28
	принятия оптимальных решений в				
	условиях неопределенности				
4	Оптимизация динамических систем	4	4	20	28
	ИТОГО:	14	14	80	108

Очно-заочная форма обучения

№		Контактна	ая работа, час.		
π/	Наименование тем (разделов)	Занятия		CPC,	Всего,
П	дисциплины	лекционно	Семинары	час.	час.
		го типа			
1	Математические модели и	2	1	25	28
	классификация задач и методов				
	принятия оптимальных решений				
2	Компьютерные и специальные методы	1	-	23	24
	оптимизации				
3	Многокритериальные задачи и методы	2	1	25	28
	принятия оптимальных решений в				
	условиях неопределенности				
4	Оптимизация динамических систем	1	-	27	28
	итого:	6	2	100	108

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Самостоятельная работа является одним из основных видов учебной деятельности, составной частью учебного процесса и имеет своей целью: глубокое усвоение материала дисциплины, совершенствование и закрепление навыков самостоятельной работы с литературой, рекомендованной преподавателем, умение найти нужный материал и самостоятельно его использовать, воспитание высокой творческой активности, инициативы, привычки к постоянному совершенствованию своих знаний, целеустремленному научному поиску.

Контроль самостоятельной работы, является важной составляющей текущего контроля успеваемости, осуществляется преподавателем во время лекционных и практических (семинарских) занятий и обеспечивает оценивание хода освоения изучаемой лиспиплины.

Вопросы для самостоятельного изучения

- 1. Общая постановка задачи линейного программирования. Примеры экономических задач, решаемых с помощью составления и расчета линейных математических моделей.
- 2. Основные представления о методах решения задач ЛП, основанных на направленном переборе вершин ОДР (симплекс-метод, графический метод и др.)
- 3. Двойственность в линейном программировании Теоремы двойственности и их применение.
- 4. Интерпретация двойственных управляющих переменных. Экономический анализ задач ЛП с использованием теории двойственности.
- 5. Некоторые специальные задачи линейного программирования: транспортная, производственно-транспортная, задача о назначении и методы их решения.
 - 6. Градиентные методы в задаче безусловной оптимизации.
 - 7. Линейное программирование в среде MS Excel.
- 8. Основные представления о методах оптимизации в невыпуклом случае. Общая постановка целочисленной задачи линейного программирования. Основные методы решения целочисленных задач (графический метод, метод ветвей и границ, метод Гомори).

- 9. Задача выбора решений в условиях неопределенности. Основные критерии выбора решений в условиях неопределенности (принцип гарантированного результата, критерий Байеса-Лапласа, критерий Уальда, критерий Сэвиджа, критерий Гурвица).
- 10. Применение принципа гарантированного результата в задачах экономического планирования.
- 11. Принятие решений при случайных параметрах. Вероятностная информация о параметрах.
 - 12. Происхождение и постановка задачи многокритериальной оптимизации.
- 13. Динамические задачи оптимизации. Примеры: простейшая динамическая модель производства, задача поиска оптимальной производственной программы, задача распределения инвестиций. Многошаговые и непрерывные динамические модели.
 - 14. Понятия управления и состояния в динамических моделях.
- 15.Задача построения программной траектории как задача математического программирования (в конечномерном или бесконечномерном пространстве). Динамическое программирование в многошаговых задачах оптимизации.
- 16. Принцип оптимальности Беллмана. Функция Беллмана. Уравнение Беллмана в многошаговых задачах оптимизации. Решение задач динамического программирования (на примере задач о замене оборудования и распределения инвестиций).

Примерные темы рефератов (докладов)

- 1. Задача принятия решения, характеристика её элементов.
- 2. Процесс принятия решения, его этапы и процедуры.
- 3. Признаки классификации задач принятия решений и классификация задач по этим признакам.
 - 4. Условия оптимальности в симплекс методе.
 - 5. Алгоритм симплекс метода.
 - 6. Матричные игры (на примере игры, в которой принимают участие два игрока).
 - 7. Смешанные стратегии в матричных играх.
 - 8. Структура порционной игры.
 - 9. Нормализация позиционной игры.
 - 10. Биматричные игры. Основные понятия.
 - 11. Смешанные стратегии в биматричных играх.
 - 12. Поиск равновесных ситуаций на примере конкретной задачи.
 - 13. Динамическое программирование. Постановка задачи.
 - 14. Принцип оптимальности Беллмана.
 - 15. Элементы теории управления запасами.
 - 16. Теория массового обслуживания.
 - 17. Процесс гибели и размножения.

Распределение самостоятельной работы

Виды, формы и объемы самостоятельной работы студентов при изучении данной дисциплины определяются ее содержанием и отражены в следующей таблице:

	Наименование тем (разделов)	Вид самостоятельной работы	Объем самостоятельной работы		
№ п/п	дисциплины		очная форма обучения	очно-заочная форма обучения	
1.	Математические модели и	Работа с литературой, выполнение заданий,	10	25	

	классификация задач и	подготовка к занятиям,		
	методов принятия	написание рефератов,		
	оптимальных решений	подготовка докладов		
2.	Компьютерные и	Работа с литературой,	10	23
	специальные методы	выполнение заданий,		
	оптимизации	подготовка к занятиям,		
		написание рефератов,		
		подготовка докладов		
3.	Многокритериальные	Работа с литературой,	10	25
	задачи и методы	выполнение заданий,		
	принятия оптимальных	подготовка к занятиям,		
	решений в условиях	написание рефератов,		
	неопределенности	подготовка докладов		
4.	Оптимизация динами-	Работа с литературой,	10	27
	ческих систем	выполнение заданий,		
		подготовка к занятиям,		
		написание рефератов,		
		подготовка докладов		
ИТО	ого:	80	100	

8. Перечень вопросов и типовые задания для подготовки к промежуточной аттестации

8.1. Перечень вопросов для подготовки к зачету с оценкой

- 1. Дайте общую формулировку детерминированной статической задачи оптимизации.
- 2. Назовите основные причины неопределенности в параметрах математической модели и объясните ее влияние на решение.
- 3. Расскажите об использовании оптимизации в задачах идентификации параметров математических молелей.
 - 4. Назовите причины отсутствия оптимального решения.
 - 5. Сформулируйте общую задачу нелинейного программирования.
- 6. Сформулируйте необходимое условие локального максимума в общей задаче нелинейного программирования.
- 7. Сформулируйте и проиллюстрируйте теорему об отделимости выпуклых множеств.
 - 8. Сформулируйте достаточное условие выпуклости функции.
 - 9. Сформулируйте теорему о глобальном максимуме в выпуклом случае.
- 10. Приведите содержательный пример выпуклой задачи нелинейного программирования.
 - 11. Сформулируйте теорему Куна-Таккера.
 - 12. Дайте экономическую интерпретацию множителей Лагранжа.
 - 13. Приведите содержательные примеры задачи линейного программирования.
- 14. Дайте интерпретацию двойственных переменных в задаче линейного программирования.
- 15. Перечислите все операции графического метода решения задачи линейного программирования.
- 16. Расскажите, какие возможности предоставляет среда MS Excel для решения задач линейного программирования.

- 17. Сформулируйте в общей постановке задачу целочисленного программирования. Приведите содержательные примеры задачи целочисленного программирования.
 - 18. Сформулируйте задачу выбора решений в условиях неопределенности.
- 19. Назовите и сформулируйте основные критерии выбора решений в условиях неопределенности (принцип гарантированного результата, критерий Уальда, критерий Байеса-Лапласа, критерий Сэвиджа, критерий Гурвица).
 - 20. Сформулируйте постановку задачи многокритериальной оптимизации.
 - 21. Дайте определение доминирования и оптимальности по Парето.
- 22. Назовите основные подходы к построению методов поиска решений в задачах многокритериальной оптимизации.
 - 23. Приведите примеры многошаговых систем в менеджменте.
 - 24. Укажите, в чем состоят особенности динамических задач оптимизации.
 - 25. Приведите содержательные примеры динамической задачи оптимизации.
 - 26. Сформулируйте определение управления и состояния в динамических моделях.
 - 27. Приведите примеры задания критерия в динамических задачах оптимизации.
- 28. Укажите, в чем состоит метод динамического программирования в многошаговых задачах оптимизации.
 - 29. Сформулируйте принцип оптимальности и запишите уравнение Беллмана.
- 30. Обоснуйте, как задача оптимизации многошаговой системы сводится к задаче математического программирования.

8.2.Типовые задания для оценки знаний

- 1. Степень привлекательности, превосходства по какому-то критерию одной альтернативы по сравнению с другими альтернативами называется...
 - а) доминантностью;
 - б) качеством альтернативы;
 - в) полезностью;
 - г) выгодностью.
- 2. Утверждение, что может быть установлено отношение между полезностями любых альтернатив: либо одна из них превосходит другую, либо они равны, называется аксиомой...
 - а) возможности сравнения;
 - б) транзитивности;
 - в) соотношения полезностей;
 - г) независимости полезностей.
 - 3. Числовая характеристика, которая является показателем риска:
 - а) дисперсия;
 - б) среднее значение;
 - в) ковариация;
 - г) корреляция.

8.3. Типовые задания для оценки умений

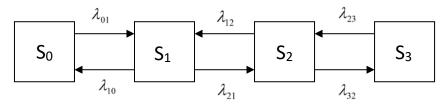
Задание1. Постройте полное ранжирование казанных в таблице векторных оценок по критериям u и v, зная, что в области векторных оценок ЛКЗ (локальный коэффициент

замещения) имеет вид:
$$k(u,v) = \frac{2v}{3u}$$
Вариант критерий

	и	ν
1	5	2
2	3	3
3	2	4
4	1,5	4,5
5	1,3	5

Задание 2. Пусть целочисленная задача имеет математическую модель вида

$$\begin{cases} F = x_1 + x_2 \rightarrow \max; \\ 11x_1 + 4.5x_2 \le 49.5; \\ 5x_1 + 19x_2 \le 95; \\ x_1, x_2 \ge 0 - \mu e$$
лые.


Найти допустимые и оптимальное решение

8.4. Типовые задания для оценки навыков

Задание 1. Найти оптимальное распределение средств между тремя предприятиями при условии, что прибыль $f_k(u)$, k=1,2,3, полученная от k - того предприятия, является функцией от вложенных в него средство u , если:

и	1	2	3	4	5	6	7	8
$f_1(u)$	5	6	7	9	9	11	12	14
$f_2(u)$	0	3	4	6	7	9	12	13
$f_3(u)$	4	4	6	6	8	8	10	10

Задание 2. Запишите уравнение Колмогорова и найдите предельные вероятности для системы, граф состояний которой имеет вид:

$$\lambda_{01} = 2$$
, $\lambda_{1,2} = 3$, $\lambda_{23} = 5$ $\lambda_{10} = 3$ $\lambda_{21} = 4$ $\lambda_{32} = 6$

9. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

9.1. Основная литература

1. Токарев, В. В. Методы оптимизации : учебник для вузов / В. В. Токарев. — Москва : Издательство Юрайт, 2025. — 440 с. — (Высшее образование). — ISBN 978-5-534-04712-7. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/563479

2. Толпегин, О. А. Методы оптимального управления: учебник и практикум для вузов / О. А. Толпегин. — 2-е изд., испр. и доп. — Москва: Издательство Юрайт, 2025. — 234 с. — (Высшее образование). — ISBN 978-5-534-13534-3. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/562078

9.2. Дополнительная литература

- 1. Методы оптимизации. Задачник : учебное пособие для вузов / В. В. Токарев, А. В. Соколов, Л. Г. Егорова, П. А. Мышкис. Москва : Издательство Юрайт, 2025. 292 с. (Высшее образование). ISBN 978-5-534-10417-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/565575
- 2. Граецкая, О. В. Математические и инструментальные методы принятия решений : учебное пособие : [16+] / О. В. Граецкая, Ю. С. Чусова, Н. С. Ксенз ; Южный федеральный университет. Ростов-на-Дону ; Таганрог : Южный федеральный университет, 2020. 146 с. : ил., табл., схем., граф. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=612188
- 3. Методы принятия управленческих решений : учебник для вузов / П. В. Иванов [и др.] ; под редакцией П. В. Иванова. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 351 с. (Высшее образование). ISBN 978-5-534-16409-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/565333
 - 10. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины и информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)
 - 1. https://biblioclub.ru/ ЭБС «Университетская библиотека онлайн»
 - 2. https://urait.ru/ ЭБС «Образовательная платформа Юрайт»
- 3. https://elibrary.ru/org_titles.asp?orgsid=14364 научная электронная библиотека (НЭБ) «eLIBRARY.RU»
 - 4. https://rosstat.gov.ru/ сайт Федеральной службы государственной статистики
- 5. https://www.consultant.ru/online/ Информационная справочная система «КонсультантПлюс

Лицензионное программное обеспечение:

- Windows (зарубежное, возмездное);
- MS Office (зарубежное, возмездное);
- Adobe Acrobat Reader (зарубежное, свободно распространяемое);
- КонсультантПлюс: «КонсультантПлюс: Студент» (российское, свободно распространяемое);
 - 7-zip архиватор (зарубежное, свободно распространяемое);
 - Comodo Internet Security (зарубежное, свободно распространяемое).

11. Методические указания для обучающихся по освоению дисциплины

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) – русский.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных

модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены занятиями семинарского и лекционного типа. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

Занятия семинарского типа

Семинарские (практические занятия) представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров и практических занятий является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также решение задач и разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на практических занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание практических заданий входит в накопленную оценку.

Самостоятельная работа обучающихся

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
- углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
- развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов образовательного учреждения.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Инструктаж проводится преподавателем за счет объема времени, отведенного на изучение дисциплины.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

Помещения для самостоятельной работы обучающихся должны быть оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
- самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
- использовать для самопроверки материалы фонда оценочных средств;
- выполнять домашние задания по указанию преподавателя.

Рекомендации по обучению инвалидов и лиц с OB3

Освоение дисциплины инвалидами и лицами с OB3 может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования инвалидами и лицами с OB3.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ОВЗ, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. № АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Медиаматериалы также следует использовать и адаптировать с учетом индивидуальных особенностей обучения инвалидов и лиц с OB3.

Освоение дисциплины инвалидами и лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам инвалидов и лиц с OB3.

Форма проведения аттестации для студентов-инвалидов и лиц с OB3 устанавливается с учетом индивидуальных психофизических особенностей. Для инвалидов и лиц с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорно-двигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
- методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью и лицам с OB3 увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
- устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью и лиц с ОВЗ процедура оценивания результатов обучения может проводиться в несколько этапов.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Учебная аудитория, предназначенная для проведения учебных занятий, предусмотренных настоящей рабочей программой дисциплины, оснащенная оборудованием и техническими средствами обучения, в состав которых входят: комплекты специализированной учебной мебели, доска классная, мультимедийный проектор, экран, колонки, компьютер с установленным лицензионным программным обеспечением, с выходом в сеть «Интернет» и доступом в электронную информационно-образовательную среду.

Помещение для самостоятельной работы обучающихся – аудитория, оснащенная следующим оборудованием и техническими средствами: специализированная мебель для преподавателя и обучающихся, доска учебная, мультимедийный проектор, экран, звуковые колонки, компьютер (ноутбук), персональные компьютеры для работы обучающихся с установленным лицензионным программным обеспечением, с выходом в сеть «Интернет» и доступом в электронную информационно-образовательную среду.