

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНСТИТУТ МЕЖДУНАРОДНЫХ ЭКОНОМИЧЕСКИХ СВЯЗЕЙ»

INSTITUTE OF INTERNATIONAL ECONOMIC RELATIONS

Принята на заседании Учёного совета ИМЭС (протокол от 27 марта 2025 г. № 8) **УТВЕРЖДАЮ** Ректор ИМЭС Ю.И. Богомолова 27 марта 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МАТЕМАТИКА

по направлению подготовки 38.05.01 Экономическая безопасность

Направленность (профиль) «Экономико-правовое обеспечение экономической безопасности»

Приложение 4 к основной профессиональной образовательной программе по направлению подготовки 38.05.01 Экономическая безопасность направленность (профиль) «Экономико-правовое обеспечение экономической безопасности»

Рабочая программа дисциплины «Математика» входит в состав основной профессиональной образовательной программы высшего образования по специальности 38.05.01 Экономическая безопасность, направленность (профиль) «Экономико-правовое обеспечение экономической безопасности» и предназначена для обучающихся очной и очно-заочной форм обучения.

СОДЕРЖАНИЕ

1. Цель и задачи дисциплины
2. Место дисциплины в структуре основной профессиональной образовательной
программы высшего образования
3. Объем дисциплины в зачетных единицах и академических часах с указанием количества
академических часов, выделенных на контактную работу обучающихся с преподавателем
(по видам учебных занятий) и на самостоятельную работу обучающихся
4. Перечень планируемых результатов обучения по дисциплине, соотнесенных о
планируемыми результатами освоения образовательной программы5
5. Содержание дисциплины
6. Структура дисциплины по темам с указанием отведенного на них количества
академических часов и видов учебных занятий
7. Перечень учебно-методического обеспечения для самостоятельной работы и текущего
контроля обучающихся по дисциплине
8. Перечень вопросов и типовые задания для подготовки к экзамену
9. Перечень основной и дополнительной учебной литературы, необходимой для освоения
дисциплины
10. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"
необходимых для освоения дисциплины (модуля) и информационных технологий
используемых при осуществлении образовательного процесса по дисциплине (модулю)
включая перечень программного обеспечения и информационных справочных систем (при
необходимости)
11. Методические указания для обучающихся по освоению дисциплины
12. Описание материально-технической базы, необходимой для осуществления
образовательного процесса по дисциплине (модулю)20

1. Цель и задачи дисциплины

Цель дисциплины «Математика» — ознакомление с основными понятиями математики, освоение основных приемов решения практических задач по темам дисциплины, развитие четкого логического мышления.

Задачи дисциплины:

- изучение с основ аппарата математики для решения теоретических и практических задач экономики;
- формирование умений и навыков, необходимых при практическом применении математических моделей и методов для анализа и моделирования сложных систем, процессов, явлений, для поиска оптимальных решений и выбора наилучших способов их реализации.

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования

Учебная дисциплина «Математика» входит в базовую часть учебного плана по направлению подготовки 38.05.01 Экономическая безопасность, направленность (профиль) «Экономико-правовое обеспечение экономической безопасности».

3. Объем дисциплины зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетные единицы, всего – 144 часа.

	Всего часов		
Вид учебной работы	очная форма обучения	очно-заочная форма обучения	
Контактная работа с преподавателем (всего)	56	10	
В том числе:			
Занятия лекционного типа	28	6	
Занятия семинарского типа (семинары)	14	4	
Практические занятия	14	-	
Самостоятельная работа	61	107	
Контроль 27		27	
Форма контроля	Экзамен		
Общая трудоемкость:	144		

4. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование Код и наименование компетенции(ий) индикатора достижения		Планируемые результаты обучения по дисциплине	
выпускника	компетенции	обучения по дисциплине	
выпускника ОПК-1 Способен использовать знания и методы математики, применять статистико-математический инструментарий, строить экономико-математические модели, необходимые для решения профессиональных задач, анализировать и интерпретировать полученные результаты.	ИОПК 1.1 Демонстрирует знание математической науки и имеет представление об ее методах. ИОПК 1.2 Применяет статистикоматематический инструментарий, строит экономико-математические модели необходимые для решения профессиональных задач. ИОПК 1.3 Анализирует и интерпретирует результаты статистико-	Знать: основные понятия математики; основные приемы решения практических задач по математике. Уметь: использовать теоретические знания для анализа и обработки данных, необходимых для решения профессиональных задач. Владеть: навыками использования математического аппарата для решения профессиональных задач.	
интерпретировать		задач.	

5. Содержание дисциплины.

No	Наименование тем	Содержание тем (разделов)
п/п	(разделов)	
1	Линейная алгебра.	Понятие определителя квадратной матрицы. Вычисление определителей второго и третьего порядка. Основные свойства определителей. Минор и алгебраическое дополнение элемента определителя. Теорема Лапласа и вычисление определителей разложением по строке (столбцу). Определитель транспонированной матрицы. Понятие матрицы, обратной данной. Необходимое и достаточное условие существования обратной матрицы. Обращение матриц и его алгоритмы. Понятие ранга матрицы. Основные понятия и определения. Матрица и расширенная матрица системы. Метод Гаусса решения систем линейных уравнений. Решение определенных систем линейных уравнений методом обратной матрицы и по формулам Крамера. Понятие системы линейных однородных уравнений. Ненулевые решения системы линейных однородных уравнений и их отыскание методом Гаусса. Понятие фундаментальной системы решений. Теорема Кронекера-Капелли и ее практическое применение к решению вопроса о совместности систем линейных уравнений.
2	Введение в математический анализ.	Понятие числовой последовательности. Примеры последовательностей. Ограниченные и неограниченные последовательности. Бесконечно большие и бесконечно малые последовательности. Предел числовой последовательности. Существование предела у ограниченной монотонной последовательности (теорема Вейерштрасса). Предел функции одной переменной. Односторонние и двусторонние пределы. Бесконечно малые (бесконечно большие) величины и их связь с пределами функций. Основные свойства операции предельного перехода. Предельный переход в сложной функции. Первый и второй замечательные пределы. Непрерывность функции в точке и на множестве. Точки разрыва и их классификация. Арифметические действия над непрерывными функциями. Непрерывность основных элементарных функций.
3	Дифференциальное исчисление функции одной переменной.	Понятие производной функции одной переменной. Геометрическая и экономическая интерпретации производной. Уравнение касательной. Понятие дифференцируемости функции в точке. Необходимое и достаточное условие дифференцируемости. Связь непрерывности и дифференцируемости функции в точке. Производная суммы, разности, произведения, частного двух функций, сложной и обратной функций. Дифференцирование функций, заданных параметрически. Производные основных элементарных

4	Функции нескольких переменных (ФНП).	функций. Понятие дифференциала функции одной переменной. Геометрическая интерпретация дифференциала. Основные свойства дифференциала. Производные и дифференциалы высших порядков функции одной переменной и их свойства. Иллюстрация экономического смысла второй производной. Асимптоты графика функции одной переменной, их классификация и отыскание. Полное исследование функции одной переменной с использованием первой и второй производных и построение эскиза ее графика. Отыскание глобального максимума (минимума) функции одной переменной на всей области ее определения. Решение задачи максимизации прибыли фирмы в терминах объема выпускаемой продукции (случай одного используемого ресурса). Достаточное условие монотонности функции на интервале. Достаточные условия локального экстремума функции одной переменной. Выпуклые (вогнутые) функции одной переменной. Необходимое и достаточное условие выпуклости (вогнутости). Точка перегиба. Необходимое и достаточное условия существования точки перегиба. Асимптоты графика функции одной переменной, их классификация и отыскание. Полное исследование функции одной переменной с использованием первой и второй производных и построение эскиза ее графика. Отыскание глобального максимума (минимума) функции одной переменной на всей области ее определения. Частные производные и частные дифференциалы ФНП. Дифференцируемость ФНП. Главная линейная часть полного приращения ФНП. Полный дифференцируемость ФНП. Главная линейная часть полного приращения ФНП. Полный дифференцируемость сложных ФНП. Производных. Эластичности. Касательная плоскость к графику ФНП. Дифференцируемость сложных ФНП. Производная по направлению ФНП. Градиент ФНП и его основные свойства. Частные производные и полный
		дифференциал второго порядка ФНП. Теорема о равенстве смешанных производных. Экстремум ФНП, необходимое и достаточное условие экстремума.
5	Элементы интегрального исчисления.	Первообразная и неопределенный интеграл. Первая основная теорема интегрального исчисления (о существовании первообразной у непрерывной функции). Основные свойства неопределенного интеграла. Интегралы от основных элементарных функций. Табличные интегралы. Основные приемы интегрирования (разложением, заменой переменной и по частям). Определенный интеграл и его геометрическая интерпретация. Основные свойства определенного интеграла. Теорема о среднем. Определенный интеграл с переменным верхним пределом и его производная по этому пределу. Формула Ньютона-Лейбница. Вторая основная теорема интегрального исчисления (о существовании определенного интеграла от непрерывной функции). Замена переменной и интегрирование по частям для определенного интеграла. Экономические приложения определенного интеграла. Несобственные интегралы. Абсолютная и условная сходимость несобственных интегралов.

6. Структура дисциплины по темам с указанием отведенного на них количества академических часов и видов учебных занятий.

Очная форма обучения

№	Наименование тем	Контактная работа Самос			Самостоя	Всего,
п/п	(разделов) дисциплины	Занятия лекционного типа	Семинары	Практи ческие занятия	тельная работа, час	час
1	Линейная алгебра	8	4	4	16	32
2	Введение в математический анализ	6	4	4	12	26
3	Дифференциальное исчисление функции одной переменной.	6	2	2	12	22
4	Функции нескольких переменных (ФНП).	4	2	2	10	18
5	Элементы интегрального исчисления	4	2	2	11	19
Кон	Контроль:					27
ИТС	ИТОГО: 28 14 14 61		61	144		

Очно-заочная форма обучения

№ Наименование тем		Контактная работа		Самостоя	Всего,
п/п	(разделов) дисциплины	Занятия лекционного типа	Семинары	тельная ч работа, час	час
1	Линейная алгебра	1	1	30	32
2	Введение в математический анализ	1	_	25	26
3	Дифференциальное исчисление функции одной переменной.	2	1	19	22
4	Функции нескольких переменных (ФНП). Дифференцируемые ФНП.	1	1	16	18
5	Элементы интегрального исчисления	1	1	17	19
Кон	гроль:				27
ИТС) ΓO:	6	4	107	144

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Самостоятельная работа является одним из основных видов учебной деятельности, составной частью учебного процесса и имеет своей целью: глубокое усвоение материала дисциплины, совершенствование и закрепление навыков самостоятельной работы с литературой, рекомендованной преподавателем, умение найти нужный материал и самостоятельно его использовать, воспитание высокой творческой активности, инициативы, привычки к постоянному совершенствованию своих знаний, к целеустремленному научному поиску.

Контроль самостоятельной работы, является важной составляющей текущего контроля успеваемости, осуществляется преподавателем во время занятий лекционного и семинарского типов и обеспечивает оценивание хода освоения изучаемой дисциплины.

Вопросы для самостоятельного изучения.

- 1. Основные сведения о матрицах. Виды матриц. Арифметические операции над матрицами. Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Ранг матрицы и его отыскание.
 - 2. Линейная алгебра в решении экономических задач.
- 3. Вычисление определителей второго и третьего порядка. Основные свойства определителей. Вычисление определителей разложением по строке (столбцу) более высокого порядка.
- 4. Методы решения систем линейных уравнений. Метод Жордано-Гаусса для решения систем линейных уравнений.
- 5. Теорема Кронекера-Капелли и ее практическое применение к решению вопроса о совместности систем линейных уравнений.
- 6. Понятие системы линейных однородных уравнений. Ненулевые решения систем линейных однородных уравнений и их отыскание методом Гаусса.
- 7. Фундаментальная система решений. Построение фундаментальной системы решений системы линейных однородных уравнений.
- 8. Понятия множества и подмножества. Основные операции над множествами. Понятие отображения (функции), его области определения и области значений. Элементарные функции.
- 9. Понятие числовой последовательности. Примеры последовательностей. Ограниченные и неограниченные последовательности. Бесконечно большие и бесконечно малые последовательности. Предел числовой последовательности. Существование предела у ограниченной монотонной последовательности (теорема Вейерштрасса).
- 10. Понятие функции. Область определения и множество значений функции. Монотонная, четная, периодическая функция.
- 11. Предел функции. Раскрытие неопределенностей. Односторонние пределы. Первый замечательный предел. Второй замечательный предел.
- 12. Непрерывность функции в точке и на множестве. Односторонняя непрерывность. Точки разрыва и их классификация.
- 13. Бесконечно малые функции. Их свойства. Сравнение бесконечно малых. Эквивалентные бесконечно малые.
- 14. Понятие производной функции одной переменной. Геометрическая и экономическая интерпретации производной. Уравнение касательной и нормали.
- 15. Понятие о предельной полезности продукта и предельной производительности ресурса. Понятие об эластичности функции.
- 16. Дифференцируемость функции в точке. Необходимое и достаточное условие дифференцируемости. Основные правила дифференцирования.
- 17. Производные основных элементарных функций. Дифференцирование функций, заданных параметрически, заданных неявно, логарифмическое дифференцирование.
- 18. Понятие дифференциала функции одной переменной. Геометрическая интерпретация дифференциала. Производные и дифференциалы высших порядков функции одной переменной и их свойства. Иллюстрация экономического смысла второй производной.
 - 19. Правило Лопиталя для раскрытия неопределенностей типа $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ и $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$.

- 20. Монотонность функции. Экстремумы функции одной переменной. Задача максимизации прибыли фирмы. Необходимое условие существования внутреннего локального экстремума (теорема Ферма).
- 21. Основные теоремы дифференциального исчисления (теоремы Ролля, Лагранжа и Коши) и их геометрическая интерпретация. Формулы Тейлора и Маклорена, их использование для приближенного вычисления значений функций.
- 22. Выпуклые (вогнутые) функции одной переменной. Необходимое и достаточное условие выпуклости (вогнутости). Точка перегиба. Необходимое и достаточное условия существования точки перегиба.
- 23. Асимптоты графика функции одной переменной, их классификация и отыскание.
- 24. Функции двух переменных. Понятие о линии (множестве) уровня функции двух переменных. Карта линий уровня и график функции двух переменных.
- 25. Экономические иллюстрации (функции спроса и предложения, функция полезности, производственная функция).
- 26. Предел функции двух и нескольких переменных. Непрерывность ФНП в точке и на множестве. Точки непрерывности и точки разрыва ФНП.
- 27. Частные производные и частные дифференциалы ФНП. Дифференцируемость ФНП. Полный дифференциал ФНП. Достаточное условие дифференцируемости ФНП. Геометрическая и экономическая интерпретация частных производных.
- 28. Производная по направлению ФНП. Градиент ФНП и его основные свойства. Частные производные и полный дифференциал второго порядка ФНП. Теорема о равенстве смешанных производных.
- 29. Исследование функции двух переменных на экстремум. Наибольшее и наименьшее значение ФНП в замкнутой области.
- 30. Первообразная и неопределенный интеграл. Первая основная теорема интегрального исчисления (о существовании первообразной у непрерывной функции). Основные свойства неопределенного интеграла. Интегралы от основных элементарных функций. Табличные интегралы.
- 31. Основные приемы интегрирования (замена переменной и «по частям»). Интегрирование дробно-рациональной функции.
- 32. Определенный интеграл и его геометрическая интерпретация. Основные свойства определенного интеграла. Теорема о среднем. Определенный интеграл с переменным верхним пределом и его производная по этому пределу. Формула Ньютона-Лейбница.
 - 33. Замена переменной и интегрирование по частям для определенного интеграла.
 - 34. Экономические приложения определенного интеграла.
- 35. Несобственные интегралы. Абсолютная и условная сходимость несобственных интегралов.

Примерные темы рефератов (докладов)

- 1. Габриэль Крамер жизнь и творчество. Основоположник линейной алгебры.
- 2. Г.Ф. Лейбниц и его вклад в развитие математического анализа.
- 3. И. Ньютон один из основоположников математического анализа.
- 4. Софья Васильевна Ковалевская первая женщина-профессор математики.
- 5. Огюстен Луи Коши великий французский математик. Его вклад в математический анализ.
 - 6. Эварист Галуа основатель высшей алгебры.
 - 7. Нильс Абель норвежский математик.
 - 8. Карл Вейерштрасс.
 - 9. Системы линейных неравенств.
 - 10. Л. Кронекер, А. Капелли. Теорема Кронекера-Капелли.

- 11. Экономические модели.
- 12. Линейное программирование в экономике.
- 13. Исследование операций.
- 14. Теория игр.
- 15. Кодирование информации.
- 16. Метод математической индукции.
- 17. Математические головоломки: сущность, значение и виды.
- 18. Связь математики с экономическими науками.
- 19. История появления комплексных числе.
- 20. Линейная зависимость векторов.

Распределение самостоятельной работы

Виды, формы и объемы самостоятельной работы студентов при изучении данной дисциплины определяются ее содержанием и отражены в следующей таблице:

№	Наименование тем	Вид	Объем самостоятельной		
п/п	(разделов) дисциплины	самостоятельной	работы		
		работы	очная форма	очно-заочная	
			обучения	форма обучения	
1	Линейная алгебра.	подготовка к	16	30	
		аудиторным			
		занятиям, написание			
		рефератов,			
		подготовка докладов			
2	Ведение в математический	подготовка к	12	25	
	анализ	аудиторным			
		занятиям, написание			
		рефератов,			
		подготовка докладов			
3	Дифференциальное	подготовка к	12	19	
	исчисление функций одной	аудиторным			
	переменной.	занятиям, написание			
		рефератов,			
		подготовка докладов			
4	Функции нескольких	подготовка к	10	16	
	переменных (ФНП).	аудиторным			
	Дифференцируемые ФНП.	занятиям, написание			
		рефератов,			
		подготовка докладов			
5	Элементы интегрального	подготовка к	11	17	
	исчисления.	аудиторным			
		занятиям, написание			
		рефератов,			
		подготовка докладов			
ИТС)ГO:		61	107	

8. Перечень вопросов и типовые задания для подготовки к промежуточной аттестации

8.1 Перечень вопросов для подготовки к экзамену

- 1. Матрицы. Основные понятия, свойства, операции. Транспонированная и обратная матрица. Определители второго и более высоких порядков. Минор, алгебраическое дополнение.
- 2. Свойства определителей. Вычисление определителя по элементам строки (столбца).
- 3. Системы линейных уравнений. Основные понятия. Решение систем линейных уравнений методом Крамера. Ранг матрицы. Исследование системы линейных уравнений. Теорема Кронекера- Капелли.
 - 4. Матричный способ решения систем линейных уравнений. Метод Гаусса.
- 5. Понятие системы линейных однородных уравнений. Ненулевые решения систем линейных однородных уравнений и их отыскание методом Гаусса. Понятие фундаментальной системы решений. Предмет математического анализа и его роль в экономической теории и практике. Понятия множества и подмножества. Взаимно однозначное соответствие множеств. Понятие отображения (функции), его области определения и области значений. Элементарные функции.
- 6. Функция. Область определения. Способы задания. Элементарные функции (явные, неявные, алгебраические, трансцендентные).
- 7. Последовательности. Примеры последовательностей. Ограниченные и неограниченные последовательности. Монотонные и строго монотонные. Бесконечно большие и бесконечно малые последовательности.
- 8. Предел числовой последовательности. Существование предела у ограниченной монотонной последовательности (теорема Вейерштрасса).
- 9. Предел функции одной переменной. Односторонние и двусторонние пределы. Бесконечно малые (бесконечно большие) величины и их связь с пределами функций. Основные свойства операции предельного перехода. Предельный переход в сложной функции.
 - 10. Первый и второй замечательные пределы.
- 11. Эквивалентные бесконечно малые. Сравнение бесконечно малых функций. Примеры использования эквивалентных бесконечно малых при вычислении пределов.
- 12. Непрерывность функции. Разрывы, их классификация. Основные свойства непрерывных функций на отрезке.
- 13. Понятие производной функции одной переменной. Геометрическая и экономическая интерпретации производной. Уравнение касательной.
- 14. Понятие дифференцируемости функции в точке. Необходимое и достаточное условие дифференцируемости. Связь непрерывности и дифференцируемости функции в точке.
- 15. Производная суммы, разности, произведения, частного двух функций, сложной и обратной функций. Дифференцирование функций, заданных параметрически.
- 16. Производные основных элементарных функций. Понятие дифференциала функции одной переменной. Геометрическая интерпретация дифференциала. Основные свойства дифференциала.
- 17. Производные и дифференциалы высших порядков функции одной переменной и их свойства. Иллюстрация экономического смысла второй производной.
- 18. Понятие об экстремумах функции одной переменной. Задача максимизации прибыли фирмы.
- 19. Локальный экстремум функции одной переменной. Необходимое условие существования внутреннего локального экстремума (теорема Ферма).
- 20. Основные теоремы дифференциального исчисления (теоремы Ролля, Лагранжа и Коши) и их геометрическая интерпретация. Правило Лопиталя.
- 21. Достаточное условие монотонности функции на интервале. Достаточные условия локального экстремума функции одной переменной.
 - 22. Выпуклые (вогнутые) функции одной переменной. Необходимое и

достаточное условие выпуклости (вогнутости). Точка перегиба. Необходимое и достаточное условия существования точки перегиба.

- 23. Асимптоты графика функции одной переменной, их классификация и отыскание. Полное исследование функции одной переменной с использованием первой и второй производных и построение эскиза ее графика.
- 24. Функции двух переменных. Понятие о линии (множестве) уровня функции двух переменных. Экономические иллюстрации (функции спроса и предложения, функция полезности, производственная функция).
- 25. Предел функции двух и нескольких переменных. Непрерывность ФНП в точке и на множестве. Понятие о сложной ФНП.
- 26. Частные производные и частные дифференциалы ФНП. Дифференцируемость ФНП. Главная линейная часть полного приращения ФНП. Полный дифференциал ФНП.
- 27. Достаточное условие дифференцируемости ФНП. Геометрическая и экономическая интерпретация частных производных. Эластичности.
- 28. Касательная плоскость к графику ФНП. Дифференцируемость сложных ФНП. Производная по направлению ФНП. Градиент ФНП и его основные свойства.
- 29. Частные производные и полный дифференциал второго порядка ФНП. Теорема о равенстве смешанных производных.
 - 30. Экстремум ФНП, необходимое и достаточное условие экстремума.
- 31. Первообразная и неопределенный интеграл. Первая основная теорема интегрального исчисления (о существовании первообразной у непрерывной функции). Основные свойства неопределенного интеграла.
 - 32. Интегралы от основных элементарных функций. Табличные интегралы.
 - 33. Основные приемы интегрирования (заменой переменной и по частям).
 - 34. Интегрирование рациональных дробей. Примеры.
 - 35. Интегрирование иррациональных функций. Примеры.
 - 36. Интегрирование тригонометрических функций. Примеры.
- 37. Определенный интеграл и его геометрическая интерпретация. Основные свойства определенного интеграла. Теорема о среднем.
- 38. Определенный интеграл с переменным верхним пределом и его производная по этому пределу. Формула Ньютона-Лейбница.
- 39. Вторая основная теорема интегрального исчисления (о существовании определенного интеграла от непрерывной функции).
- 40. Замена переменной и интегрирование по частям для определенного интеграла. Экономические приложения определенного интеграла.
- 41. Геометрическое приложение определенного интеграла. Площадь криволинейной трапеции, длина дуги, вычисление объёмов тел вращения.
- 42. Несобственные интегралы 1 и 2 рода. Абсолютная и условная сходимость несобственных интегралов.

8.2 Типовые задания для оценки знаний

- 1. Определитель изменяет знак при:
- а) вынесении общего множителя строки за знак определителя;
- б) транспонировании;
- в) перестановке двух строк.
- 2. Отличие матрицы от определителя:
- а) нет различий;
- б) по форме представления;
- в) матрица таблица, определитель число.

- 3. Система линейных уравнений называется определенной, если она имеет:
- а) бесконечное множество решений;
- б) не имеет решений;
- в) единственное решение.
- 4. Значение предела $\lim_{x\to 0} \frac{3x^2 4x + 7}{7x^2 + 12x}$ равно

г) 1.

5. Предел функции $y = e^{\frac{1}{x}}$ при $x \to \pm \infty$ равен

$$(a) + \infty;$$
 $(b) - \infty;$

8.3 Типовые задания для оценки умений.

Задание 1.

Вычислить:

A)
$$\begin{vmatrix} 2 & -3 & 4 & 1 \\ 4 & -2 & 3 & 2 \\ 1 & -1 & 2 & 0 \\ 3 & -1 & 4 & 3 \end{vmatrix}$$
, 6)
$$\begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}$$
.

Задание 2.

Решить систему, предварительно исследовав на совместность:

$$\begin{cases} 2x_1 - x_2 + 3x_3 = -3 \\ 3x_1 + 2x_2 - x_3 = 10 \\ 3x_1 + x_2 - x_3 = 9 \end{cases}$$

Задание 3.

Найти производные функций

a)
$$y = 6^x \cdot tgx$$
, 6) $y = \frac{e^x - x}{arctgx}$, B) $y = (3x^4 + x^2)^3 \cdot e^{x^2 - 1}$

$$_{\Gamma}$$
) $y = x^5 + \sin x - \frac{1}{x^6} - 2^x$, $_{\Pi}$) $\sin y - \cos xy = 0$.

8.4. Типовые задания для оценки навыков

Задача 1. Составьте математическую модель исходной задачи и найти ее оптимальный план графическим методом.

Известно, что содержание трех питательных веществ A, B и C в рационе должно быть не менее 90, 70 и 90 единиц соответственно. Указанные питательные вещества содержат два вида продуктов. Содержание единиц питательных веществ в одном килограмме каждого из видов продуктов приведено в таблице.

Питательное вещество	Количество единиц питательных		
	веществ в одном кг продукта		
	I	II	
A	3	1	
В	1	1	
С	1	2	

Определите дневной рацион, обеспечивающий получение необходимого количества питательных веществ, при минимальных денежных затратах.

Задача 2. Для изготовления изделий A и B используются три вида сырья. На производство одного изделия A требуется: сырья первого вида -1 кг, второго -2 кг и третьего -4 кг. На производство одного изделия B требуется затратить: сырья первого вида -7 кг, второго -1 кг и третьего -1 кг. Производство обеспечено сырьем первого вида в количестве 490 кг, второго вида -200 кг, третьего вида -360 кг. Стоимость одного изделия A равна 90 руб., изделия B -120 руб. Составьте оптимальный план выпуска продукции, обеспечивающий максимальную прибыль.

Задача 3. Для заданной производственной функции $Q(K;L) = 21L^{0,3}K^{0,5}$, где Q — объём выпускаемой продукции, K — объем фондов (капитала), L — объём трудовых ресурсов) при $K_0 = 307$, $L_0 = 54$, найдите предельную фондоотдачу и предельную производительность труда, предельную норму замещения труда капиталом, эластичности выпуска по фондам и по труду. Ответы дайте в виде десятичных дробей с достаточным числом знаков после десятичной запятой.

9. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

9.1 Основная литература.

- 1. Шипачев, В. С. Высшая математика : учебник для вузов / В. С. Шипачев. 8-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 447 с. (Высшее образование). ISBN 978-5-534-12319-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/559675
- 2. Клюшин, В. Л. Высшая математика для экономистов. Практический курс: учебник и практикум для вузов / В. Л. Клюшин. 6-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 143 с. (Высшее образование). ISBN 978-5-534-18105-0. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/559798
- 3. Бугров, Я. С. Высшая математика. Задачник : учебное пособие для вузов / Я. С. Бугров, С. М. Никольский. Москва : Издательство Юрайт, 2025. 192 с. (Высшее образование). ISBN 978-5-9916-7568-0. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560816
- 4. Введение в высшую математику: учебник и практикум для вузов / М. Б. Хрипунова [и др.]; под общей редакцией М. Б. Хрипуновой, И. И. Цыганок. Москва: Издательство Юрайт, 2025. 478 с. (Высшее образование). ISBN 978-5-534-15087-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560153
- 5. Математика для экономистов : учебник для вузов / О. В. Татарников [и др.] ; под общей редакцией О. В. Татарникова. Москва : Издательство Юрайт, 2025. 593 с. (Высшее образование). ISBN 978-5-534-14844-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560286
 - 6. Богомолов, Н. В. Математика. Задачи с решениями : учебник для вузов / Н. В.

- Богомолов. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 755 с. (Высшее образование). ISBN 978-5-534-16210-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/568498
- 7. Богомолов, Н. В. Практические занятия по математике : учебник для вузов / Н. В. Богомолов. 11-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 578 с. (Высшее образование). ISBN 978-5-534-18418-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/568914

9.2 Дополнительная литература

- 1. Красс, М. С. Математика в экономике: математические методы и модели: учебник для вузов / М. С. Красс, Б. П. Чупрынов; ответственный редактор М. С. Красс. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 541 с. (Высшее образование). ISBN 978-5-534-16298-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560379
- 2. Шипачев, В. С. Высшая математика. Полный курс в 2 т. Том 1 : учебник для вузов / В. С. Шипачев ; под редакцией А. Н. Тихонова. 4-е изд., испр. и доп. Москва : Издательство Юрайт, 2025. 248 с. (Высшее образование). ISBN 978-5-534-07889-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561851
- 3. Шипачев, В. С. Высшая математика. Полный курс в 2 т. Том 2 : учебник для вузов / В. С. Шипачев ; под редакцией А. Н. Тихонова. 4-е изд., испр. и доп. Москва : Издательство Юрайт, 2025. 305 с. (Высшее образование). ISBN 978-5-534-07891-6. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561852
 - 10. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины и информационных технологий, используемых при осуществлении образовательного процесса по дисциплины, включая перечень программного обеспечения и информационных справочных систем (при необходимости)
 - 1. http://biblioclub.ru ЭБС «Университетская библиотека онлайн»
- 2. https://elibrary.ru/org_titles.asp?orgsid=14364 научная электронная библиотека (НЭБ) «eLIBRARY.RU»
 - 3. https://urait.ru ЭБС «Образовательная платформа Юрайт»
 - 4. https://www.consultant.ru/online/ Информационная справочная система
- 5. http://window.edu.ru/catalog/?p_rubr=2.2.75.6 Единое окно доступа к образовательным ресурсам. Раздел Информатика и информационные технологии

Лицензионное программное обеспечение:

- Windows (зарубежное, возмездное);
- MS Office (зарубежное, возмездное);
- Adobe Acrobat Reader (зарубежное, свободно распространяемое);
- КонсультантПлюс: «КонсультантПлюс: Студент» (российское, свободно распространяемое);
 - 7-zip архиватор (зарубежное, свободно распространяемое);
 - Comodo Internet Security (зарубежное, свободно распространяемое).
 - 11. Методические указания для обучающихся по освоению дисциплины.

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены занятиями семинарского и лекционного типа. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

Занятия семинарского типа

Семинарские занятия (практические занятия) представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса.

Основной формой проведения семинаров и практических занятий является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также решение задач и разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на практических занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание практических заданий входит в накопленную оценку.

Самостоятельная работа обучающихся

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов образовательного учреждения.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Инструктаж проводится преподавателем за счет объема времени, отведенного на изучение дисциплины.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

Помещения для самостоятельной работы обучающихся должны быть оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
- самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
- использовать для самопроверки материалы фонда оценочных средств;
- выполнять домашние задания по указанию преподавателя.

Рекомендации по обучению инвалидов и лиц с OB3

Освоение дисциплины инвалидами и лицами с OB3 может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования инвалидами и лицами с OB3.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ОВЗ, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. № АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Медиаматериалы также следует использовать и адаптировать с учетом индивидуальных особенностей обучения инвалидов и лиц с ОВЗ.

Освоение дисциплины инвалидами и лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам инвалидов и лиц с OB3.

Форма проведения аттестации для студентов-инвалидов и лиц с OB3 устанавливается с учетом индивидуальных психофизических особенностей. Для инвалидов и лиц с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью и лицам с OB3 увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью и лиц с ОВЗ процедура оценивания результатов обучения может проводиться в несколько этапов.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Учебная аудитория, предназначенная для проведения учебных занятий, предусмотренных настоящей рабочей программой дисциплины, оснащенная оборудованием и техническими средствами обучения, в состав которых входят: комплекты специализированной учебной мебели, доска классная, мультимедийный проектор, компьютер c установленным лицензионным программным экран, обеспечением, с выходом в сеть «Интернет» и доступом в электронную информационнообразовательную среду.

Помещение для самостоятельной работы обучающихся – аудитория, следующим оборудованием техническими средствами: оснащенная специализированная мебель для преподавателя и обучающихся, доска учебная, мультимедийный проектор, экран, звуковые колонки, компьютер персональные компьютеры для работы обучающихся с установленным лицензионным программным обеспечением, с выходом в сеть «Интернет» и доступом в электронную информационно-образовательную среду.